Clasificación de hogares pobres en la región andina de Venezuela usando redes neuronales

Gustavo Mora Ramírez, Anna Gabriela Pérez, Francklin Rivas-Echeverría

Producción científica: RevistaArtículorevisión exhaustiva

Resumen

This research is aimed to build a classifier for poor houses in the Andean region of Venezuela using artificial neural networks. For this, it was necessary to develop a multidimensional poverty indicator based on the Alkire and Foster methodology, which was modified and developed based on the shortcomings and not on the achievements. This indicator considers that poverty depends on several aspects, and six dimensions are proposed to measure it: housing conditions, housing construction materials, adaptation of services, home economics, education and health. When examining the classification obtained with backpropagation algorithm-based neural network models, it was found that the classification errors are very small, almost perfect, while the models based on radial-based functions presented higher classification errors.

Título traducido de la contribuciónPoor homes classification in the andean region of Venezuela using neural networks
Idioma originalEspañol
Páginas (desde-hasta)361-373
Número de páginas13
PublicaciónRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
Volumen2020
N.ºE33
EstadoPublicada - ago. 2020

Nota bibliográfica

Publisher Copyright:
© 2020, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.

Palabras clave

  • Alkire and Foster methodology
  • Multidimensional indicator
  • Neural networks
  • Poverty
  • Radial basis functions

Citar esto