TY - JOUR
T1 - Choquet integral-based fuzzy molecular characterizations
T2 - When global definitions are computed from the dependency among atom/bond contributions (LOVIs/LOEIs)
AU - García-Jacas, César R.
AU - Cabrera-Leyva, Lisset
AU - Marrero-Ponce, Yovani
AU - Suárez-Lezcano, José
AU - Cortés-Guzmán, Fernando
AU - Pupo-Meriño, Mario
AU - Vivas-Reyes, Ricardo
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/10/25
Y1 - 2018/10/25
N2 - Background: Several topological (2D) and geometric (3D) molecular descriptors (MDs) are calculated from local vertex/edge invariants (LOVIs/LOEIs) by performing an aggregation process. To this end, norm-, mean- and statistic-based (non-fuzzy) operators are used, under the assumption that LOVIs/LOEIs are independent (orthogonal) values of one another. These operators are based on additive and/or linear measures and, consequently, they cannot be used to encode information from interrelated criteria. Thus, as LOVIs/LOEIs are not orthogonal values, then non-additive (fuzzy) measures can be used to encode the interrelation among them. Results: General approaches to compute fuzzy 2D/3D-MDs from the contribution of each atom (LOVIs) or covalent bond (LOEIs) within a molecule are proposed, by using the Choquet integral as fuzzy aggregation operator. The Choquet integral-based operator is rather different from the other operators often used for the 2D/3D-MDs calculation. It performs a reordering step to fuse the LOVIs/LOEIs according to their magnitudes and, in addition, it considers the interrelation among them through a fuzzy measure. With this operator, fuzzy definitions can be derived from traditional or recent MDs; for instance, fuzzy Randic-like connectivity indices, fuzzy Balaban-like indices, fuzzy Kier-Hall connectivity indices, among others. To demonstrate the feasibility of using this operator, the QuBiLS-MIDAS 3D-MDs were used as study case and, as a result, a module was built into the corresponding software to compute them ( http://tomocomd.com/qubils-midas ). Thus, it is the only software reported in the literature that can be employed to determine Choquet integral-based fuzzy MDs. Moreover, regression models were created on eight chemical datasets. In this way, a comparison between the results achieved by the models based on the non-fuzzy QuBiLS-MIDAS 3D-MDs with regard to the ones achieved by the models based on the fuzzy QuBiLS-MIDAS 3D-MDs was made. As a result, the models built with the fuzzy QuBiLS-MIDAS 3D-MDs achieved the best performance, which was statistically corroborated through the Wilcoxon signed-rank test. Conclusions: All in all, it can be concluded that the Choquet integral constitutes a prominent alternative to compute fuzzy 2D/3D-MDs from LOVIs/LOEIs. In this way, better characterizations of the compounds can be obtained, which will be ultimately useful in enhancing the modelling ability of existing traditional 2D/3D-MDs.
AB - Background: Several topological (2D) and geometric (3D) molecular descriptors (MDs) are calculated from local vertex/edge invariants (LOVIs/LOEIs) by performing an aggregation process. To this end, norm-, mean- and statistic-based (non-fuzzy) operators are used, under the assumption that LOVIs/LOEIs are independent (orthogonal) values of one another. These operators are based on additive and/or linear measures and, consequently, they cannot be used to encode information from interrelated criteria. Thus, as LOVIs/LOEIs are not orthogonal values, then non-additive (fuzzy) measures can be used to encode the interrelation among them. Results: General approaches to compute fuzzy 2D/3D-MDs from the contribution of each atom (LOVIs) or covalent bond (LOEIs) within a molecule are proposed, by using the Choquet integral as fuzzy aggregation operator. The Choquet integral-based operator is rather different from the other operators often used for the 2D/3D-MDs calculation. It performs a reordering step to fuse the LOVIs/LOEIs according to their magnitudes and, in addition, it considers the interrelation among them through a fuzzy measure. With this operator, fuzzy definitions can be derived from traditional or recent MDs; for instance, fuzzy Randic-like connectivity indices, fuzzy Balaban-like indices, fuzzy Kier-Hall connectivity indices, among others. To demonstrate the feasibility of using this operator, the QuBiLS-MIDAS 3D-MDs were used as study case and, as a result, a module was built into the corresponding software to compute them ( http://tomocomd.com/qubils-midas ). Thus, it is the only software reported in the literature that can be employed to determine Choquet integral-based fuzzy MDs. Moreover, regression models were created on eight chemical datasets. In this way, a comparison between the results achieved by the models based on the non-fuzzy QuBiLS-MIDAS 3D-MDs with regard to the ones achieved by the models based on the fuzzy QuBiLS-MIDAS 3D-MDs was made. As a result, the models built with the fuzzy QuBiLS-MIDAS 3D-MDs achieved the best performance, which was statistically corroborated through the Wilcoxon signed-rank test. Conclusions: All in all, it can be concluded that the Choquet integral constitutes a prominent alternative to compute fuzzy 2D/3D-MDs from LOVIs/LOEIs. In this way, better characterizations of the compounds can be obtained, which will be ultimately useful in enhancing the modelling ability of existing traditional 2D/3D-MDs.
KW - Aggregation operators
KW - Choquet integral
KW - Fuzzy measures
KW - LOEIs
KW - LOVIs
KW - Molecular descriptors
KW - QSAR
KW - QuBiLS-MIDAS molecular descriptors
KW - ToMoCoMD-CARDD software
UR - http://www.scopus.com/inward/record.url?scp=85055540870&partnerID=8YFLogxK
U2 - 10.1186/s13321-018-0306-7
DO - 10.1186/s13321-018-0306-7
M3 - Article
AN - SCOPUS:85055540870
SN - 1758-2946
VL - 10
JO - Journal of Cheminformatics
JF - Journal of Cheminformatics
IS - 1
M1 - 51
ER -