Certain Results on Fuzzy p-Valent Functions Involving the Linear Operator

Ekram Elsayed Ali, Miguel Vivas-Cortez, Shujaat Ali Shah, Abeer M. Albalahi

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

The idea of fuzzy differential subordination is a generalisation of the traditional idea of differential subordination that evolved in recent years as a result of incorporating the idea of fuzzy set into the field of geometric function theory. In this investigation, we define some general classes of p-valent analytic functions defined by the fuzzy subordination and generalizes the various classical results of the multivalent functions. Our main focus is to define fuzzy multivalent functions and discuss some interesting inclusion results and various other useful properties of some subclasses of fuzzy p-valent functions, which are defined here by means of a certain generalized Srivastava-Attiya operator. Additionally, links between the significant findings of this study and preceding ones are also pointed out.

Idioma originalInglés
Número de artículo3968
PublicaciónMathematics
Volumen11
N.º18
DOI
EstadoPublicada - 19 sep. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 by the authors.

Huella

Profundice en los temas de investigación de 'Certain Results on Fuzzy p-Valent Functions Involving the Linear Operator'. En conjunto forman una huella única.

Citar esto