Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions

Miguel Vivas-Cortez, Rana Safdar Ali, Humira Saif, Mdi Begum Jeelani, Gauhar Rahman, Yasser Elmasry

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Fuzzy-interval valued functions (FIVFs) are the generalization of interval valued and real valued functions, which have a great contribution to resolve the problems arising in the theory of interval analysis. In this article, we elaborate the convexities and pre-invexities in aspects of FIVFs and investigate the existence of fuzzy fractional integral operators (FFIOs) having a generalized Bessel–Maitland function as their kernel. Using the class of convexities and pre-invexities FIVFs, we prove some Hermite–Hadamard (H-H) and trapezoid-type inequalities by the implementation of FFIOs. Additionally, we obtain other well known inequalities having significant behavior in the field of fuzzy interval analysis.

Idioma originalInglés
Número de artículo580
PublicaciónFractal and Fractional
Volumen7
N.º8
DOI
EstadoPublicada - ago. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 by the authors.

Huella

Profundice en los temas de investigación de 'Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions'. En conjunto forman una huella única.

Citar esto