Boosting Customer Retention in Pharmaceutical Retail: A Predictive Approach Based on Machine Learning Models

Angel Espinoza-Vega, Henry N. Roa*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Prediction models have acquired significant importance in business decision-making by allowing the use of data to generate strategic information. This study focuses on creating and evaluating a predictive model to identify possible customer abandonment in a pharmaceutical retail company to promote retention strategies. The approach is based on applying the Cross-Industry Standard Process for Data Mining (CRISP-DM) method and using Python as the primary data science tool. Three classification algorithms were considered to predict customer abandonment: neural networks, decision trees, and logistic regression. These algorithms were trained and evaluated using historical data from a pharmaceutical company. After an exhaustive analysis of the results, we concluded that the neural network model proves the most appropriate, reaching an impressive accuracy of 0.99 in the classification. The implementation of this model will allow the pharmaceutical retail company to identify in advance the customers with the highest risk of abandoning their services. This identification enables the marketing team to implement personalized and timely retention strategies, thus reducing the churn rate and improving the overall efficiency and effectiveness of the organization.

Idioma originalInglés
Título de la publicación alojadaIntelligent Computing - Proceedings of the 2024 Computing Conference
EditoresKohei Arai
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas97-117
Número de páginas21
ISBN (versión impresa)9783031622762
DOI
EstadoPublicada - 2024
EventoScience and Information Conference, SAI 2024 - London, Reino Unido
Duración: 11 jul. 202412 jul. 2024

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen1017 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

ConferenciaScience and Information Conference, SAI 2024
País/TerritorioReino Unido
CiudadLondon
Período11/07/2412/07/24

Nota bibliográfica

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Financiación

FinanciadoresNúmero del financiador
Pontificia Universidad Católica del EcuadorGI-Quito-071-2022

    Citar esto