Bifurcation study, phase portraits and optical solitons of dual-mode resonant nonlinear Schrodinger dynamical equation with Kerr law non-linearity

Yong Wu, Miguel Vivas-Cortez, Hamood Ur Rehman, El-Sayed M. Sherif, Abdul Rashid

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

This study investigates the dynamic characteristics of the dual-mode resonant non-linear Schrodinger equation with a Bhom potential. Hydrodynamics, nonlinear optical fibre communication, elastic media, and plasma physics are just a few of the mathematical physics and engineering applications for this model. The study aims to achieve two main objectives: first, to discuss bifurcation analysis, and second, to extract optical soliton solutions using the extended hyperbolic function method. The study successfully derives various wave solutions, including bright, singular, periodic singular and dark solitons, based on the governing model. The findings conferred in this article show a crucial advancement in understanding the propagation of waves in non-linear media. Additionally, bifurcation of phase portraits of ordinary differential equation consistent with the partial differential equation under consideration is conducted. We also highlight specific constraint conditions that ensure the presence of these obtained solutions. The existing literature shows that these methods are first time applied on this model.

Idioma originalInglés
PublicaciónHeliyon
Volumen10
N.º15
DOI
EstadoPublicada - 15 ago. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 The Author(s)

Financiación

FinanciadoresNúmero del financiador
King Saud University
Pontificia Universidad Católica del Ecuador, Sede QuitoUIO2022, RSP2024R33

    Huella

    Profundice en los temas de investigación de 'Bifurcation study, phase portraits and optical solitons of dual-mode resonant nonlinear Schrodinger dynamical equation with Kerr law non-linearity'. En conjunto forman una huella única.

    Citar esto