An incremental learning approach to prediction models of SEIRD variables in the context of the COVID-19 pandemic

E. Camargo, J. Aguilar*, Y. Quintero, F. Rivas, D. Ardila

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)

Resumen

Several works have proposed predictive models of the SEIRD (Susceptible, Exposed, Infected, Recovered, and Dead) variables to characterize the pandemic of COVID-19. One of the challenges of these models is to be able to follow the dynamics of the disease to make more precise predictions. In this paper, we propose an approach based on incremental learning to build predictive models of the SEIRD variables for the COVID-19 pandemic. Our incremental learning approach is a dynamic ensemble method based on a bagging scheme that allows the addition of new models or the updating of incremental models. The article proposes an incremental learning architecture composed of two components. The first component carries out an analysis of the interdependencies of the SEIRD variables and the second component is an incremental learning model that builds/updates the predictive models. The paper analyses the quality of the predictive models of our incremental learning approach using data of the COVID-19 from Colombia, and shows interesting results about the predictions of the SEIRD variables. These results are compared with an incremental learning approach based on random forests.

Idioma originalInglés
Páginas (desde-hasta)867-877
Número de páginas11
PublicaciónHealth and Technology
Volumen12
N.º4
DOI
EstadoPublicada - jul. 2022
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s) under exclusive licence to International Union for Physical and Engineering Sciences in Medicine (IUPESM).

Financiación

FinanciadoresNúmero del financiador
MinCiencias Colombia
Universidad EAFIT1216101576695

    Citar esto