Advances in Ostrowski-Mercer Like Inequalities within Fractal Space

Miguel Vivas-Cortez, Muhammad Uzair Awan, Usama Asif, Muhammad Zakria Javed, Hüseyin Budak

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

The main idea of the current investigation is to explore some new aspects of Ostrowski’s type integral inequalities implementing the generalized Jensen–Mercer inequality established for generalized s-convexity in fractal space. To proceed further with this task, we construct a new generalized integral equality for first-order local differentiable functions, which will serve as an auxiliary result to restore some new bounds for Ostrowski inequality. We establish our desired results by employing the equality, some renowned generalized integral inequalities like Hölder’s, power mean, Yang-Hölder’s, bounded characteristics of the functions and considering generalized s-convexity characteristics of functions. Also, in support of our main findings, we deliver specific applications to means, and numerical integration and graphical visualization are also presented here.

Idioma originalInglés
Número de artículo689
PublicaciónFractal and Fractional
Volumen7
N.º9
DOI
EstadoPublicada - sep. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 by the authors.

Huella

Profundice en los temas de investigación de 'Advances in Ostrowski-Mercer Like Inequalities within Fractal Space'. En conjunto forman una huella única.

Citar esto