Academic Prediction in Multi-modal Learning Environments Using Data Fusion

Wilson Chango*, Santiago Logroño, Ana Salguero, Nestor Estrada

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

Resumen

In this paper, we present a proposal to predict the academic performance of university students in multimodal and blended learning environments based on data collected from different sources. To achieve this goal, we combined and processed data from 135 students and different variables from four different sources. First, we combined and preprocessed the data to create a summary dataset in numerical and categorical format. Then, we used different white-box classification algorithms provided by the data mining tool Weka to select the best algorithm. We found that the PART algorithm showed the best performance on the quality metrics, with a ROC range of 0.917. To further improve our prediction, we applied attribute selection algorithms, with ClassifierSubsetEval performing best with J48, with a ROC range of 0.9380. In addition, we used two machine learning algorithms, voting and stacking, and found that the best result was obtained with the Jrip algorithm and the voting method, with a ROC range of 0.9330. Finally, we presented our best predictive model, which is a hybrid of classification and machine learning algorithms, with a ROC range of 0.9420. We believe that this model can help faculty take corrective action for students who are at risk of dropping out or failing.

Idioma originalInglés
Título de la publicación alojadaProceedings of the International Conference on Computer Science, Electronics and Industrial Engineering (CSEI 2023) - Innovations in Industrial Engineering and Robotics in Industry - Bridging the Gap Between Theory and Practical Application
EditoresMarcelo V. Garcia, Carlos Gordón-Gallegos, Asier Salazar-Ramírez, Carlos Nuñez
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas54-81
Número de páginas28
ISBN (versión impresa)9783031709807
DOI
EstadoPublicada - 2024
Publicado de forma externa
EventoInternational Conference on Computer Science, Electronics and Industrial Engineering, CSEI 2023 - Ambato, Ecuador
Duración: 6 nov. 202310 nov. 2023

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen797 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

ConferenciaInternational Conference on Computer Science, Electronics and Industrial Engineering, CSEI 2023
País/TerritorioEcuador
CiudadAmbato
Período6/11/2310/11/23

Nota bibliográfica

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Citar esto