Resumen
The quality must be present external in consultation services, either to satisfy the needs of the users and/or to maximize the use of the resources. For this reason, administrators require the necessary information and knowledge to support them in decision-making processes. This paper presents a time series-based model, to predict absenteeism and attendance at the outpatient service. The CRISP-DM methodology, typical of data analytics, was used to explore the models. It was found that the ARIMA model was the one that obtained the lowest absolute and quadratic error. In addition, based on the time series predictions, it was determined that the number of absences to external medicine consultations is around 10% per day. This information can be used to reduce the attention time lost due to absences.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Communication and Smart Technologies - Proceedings of ICOMTA 2021 |
Editores | Álvaro Rocha, Daniel Barredo, Paulo Carlos López-López, Iván Puentes-Rivera |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 3-12 |
Número de páginas | 10 |
ISBN (versión impresa) | 9789811657917 |
DOI | |
Estado | Publicada - 2022 |
Evento | International Conference on Communication and Applied Technologies, ICOMTA 2021 - Bogotá, Colombia Duración: 1 sep. 2021 → 3 sep. 2021 |
Serie de la publicación
Nombre | Smart Innovation, Systems and Technologies |
---|---|
Volumen | 259 SIST |
ISSN (versión impresa) | 2190-3018 |
ISSN (versión digital) | 2190-3026 |
Conferencia
Conferencia | International Conference on Communication and Applied Technologies, ICOMTA 2021 |
---|---|
País/Territorio | Colombia |
Ciudad | Bogotá |
Período | 1/09/21 → 3/09/21 |
Nota bibliográfica
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.