A neural network embedded system for real-time identification of EMG signals

C. A. Calderon, Leonardo Jaramillo, Jose Zuniga, W. Hernandez, F. Rivas-Echeverria

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

The objective of this work is to develop an embedded Artificial Neural Network (ANN) for the identification in real-time of the electromyography signal patterns (EMG). This system is going to be applied as an interface device between the user and a robotic prosthesis for upper limb. The methodology begins with the characterization of the extraction of the EMG signal: Location of the sensors, sampling and definition of patterns; then the architecture and characteristics of the ANN are defined; then the ANN is implemented in an embedded system; and, finally, the cross-validation and validation in real time of the proposed system is carried out, by means of confusion matrices. The embedded ANN implemented is of the multilayer perceptron type, has 3 hidden layers, 27 neurons input layer, 4 neurons output layer, Fedforward architecture, sigmoid type transfer function, MSE error function and Backpropagation algorithm. In the evaluation of the system it was obtained that the average accuracy of the embedded ANN is higher than 97.7%, which confirms the reliability of using this type of systems as interface devices between a user and a robotic prosthesis. This development has a high practical implication, since an intelligent system is miniaturized, and can be part of any portable hardware device in an edge computing system.

Idioma originalInglés
Título de la publicación alojadaIEEE ICA-ACCA 2018 - IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control
Subtítulo de la publicación alojadaTowards an Industry 4.0 - Proceedings
EditoresCristian Duran-Faundez, Gaston Lefranc, Mario Fernandez-Fernandez, Carlos Munoz, Ernesto Rubio
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538655863
DOI
EstadoPublicada - 2 jul. 2018
Publicado de forma externa
EventoIEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0, ICA-ACCA 2018 - Greater Concepcion, Chile
Duración: 17 oct. 201819 oct. 2018

Serie de la publicación

NombreIEEE ICA-ACCA 2018 - IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0 - Proceedings

Conferencia

ConferenciaIEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0, ICA-ACCA 2018
País/TerritorioChile
CiudadGreater Concepcion
Período17/10/1819/10/18

Nota bibliográfica

Publisher Copyright:
© 2018 IEEE.

Huella

Profundice en los temas de investigación de 'A neural network embedded system for real-time identification of EMG signals'. En conjunto forman una huella única.

Citar esto