A MACHINE LEARNING APPROACH FOR TRAFFIC-NOISE ANNOYANCE ASSESSMENT

JOSE FRANCISCO LUCIO NARANJO

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this study, models for predicting traffic-noise annoyance based on noise perception, noise exposure levels, and demographics were developed. By applying machine-learning techniques, in particular artificial neural networks (ANN), support vector machines (SVM) and multiple linear regressions (MLR), the traffic-noise annoyance models were obtained, and the error rates compared. A traffic noise map and the estimation of noise exposure for the case study area were developed. Although, it is quite evident that subjective noise perception and predicted noise exposure levels strongly influence traffic-noise annoyance, traditional statistical models fail to produce accurate predictions. Therefore, a machine learning approach was applied, which showed a better performance in terms of error rates and the coefficient of determination (R2). The best results for predicting traffic-noise annoyance were obtained with the ANN model, obtaining 42% and 35% error reduction in training subsets compared to the MRL and SVM models, respectively. For testing subsets, the error reductions were 24% and 19% for the corresponding models.
Idioma originalEspañol (Ecuador)
PublicaciónApplied Acoustics
EstadoPublicada - 24 jul. 2019
Publicado de forma externa

Citar esto