ϕ(x)-Tribonnaci polynomial, numbers, and its sum

Rajiniganth Pandurangan*, Suresh Kannan, Sabri T.M. Thabet*, Miguel Vivas-Cortez*, Imed Kedim

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

This study presents a general third-order nabla difference operator that allows us to get ϕ(x)-Tribonacci sequences, Tri-bonacci numbers, and their sum using the coefficients of different trigonometric functions and their inverse. In this section, we examined the numerical solutions and C-solutions of the ϕ(x)-Tribonacci sequences for different functions. In addition, some interesting conclusions and theorems are obtained for the sum of the terms of the Tribonacci sequence. Also, we offer appropriate examples to show how to use MATLAB to demonstrate our results.

Idioma originalInglés
Páginas (desde-hasta)32-44
Número de páginas13
PublicaciónJournal of Mathematics and Computer Science
Volumen37
N.º1
DOI
EstadoPublicada - 2025

Nota bibliográfica

Publisher Copyright:
© 2024, International Scientific Research Publications. All rights reserved.

Financiación

FinanciadoresNúmero del financiador
Prince Sattam Bin Abdulaziz UniversityPSAU/2024/R/1446
Pontificia Universidad Católica del EcuadorUIO2022

    Huella

    Profundice en los temas de investigación de 'ϕ(x)-Tribonnaci polynomial, numbers, and its sum'. En conjunto forman una huella única.

    Citar esto