Proyectos por año
Resumen
This study presents a general third-order nabla difference operator that allows us to get '(x)-Tribonacci sequences, Tribonacci
numbers, and their sum using the coefficients of different trigonometric functions and their inverse. In this section,
we examined the numerical solutions and C-solutions of the phi '(x)-Tribonacci sequences for different functions. In addition,
some interesting conclusions and theorems are obtained for the sum of the terms of the Tribonacci sequence. Also, we offer
appropriate examples to show how to use MATLAB to demonstrate our results.
numbers, and their sum using the coefficients of different trigonometric functions and their inverse. In this section,
we examined the numerical solutions and C-solutions of the phi '(x)-Tribonacci sequences for different functions. In addition,
some interesting conclusions and theorems are obtained for the sum of the terms of the Tribonacci sequence. Also, we offer
appropriate examples to show how to use MATLAB to demonstrate our results.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 32-44 |
Número de páginas | 13 |
Publicación | Journal of Mathematics and Computer Science |
Volumen | 37 |
N.º | 1 |
Estado | Publicada - sep. 2024 |
Proyectos
- 1 Terminado
-
RESULTADOS CUALITATIVOS DE ECUACIONES DIFERENCIALES FRACCIONARIAS LOCALES Y DESIGUALDADES INTEGRALES
Delgado Noboa, A. C. (Investigador principal), RANGEL OLIVEROS, Y. C. (Investigador principal), NÁPOLES VALDÉS, J. (Investigador Externo), VELASCO VELASCO, J. (Investigador Externo) & Vivas Cortez, M. J. (Director)
15/03/22 → 16/03/24
Proyecto: Investigación