Abstract
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
Original language | English |
---|---|
Article number | 4658 |
Journal | Nature Communications |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2024 |
Bibliographical note
Publisher Copyright:© The Author(s) 2024.
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nature Communications, Vol. 15, No. 1, 4658, 12.2024.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Positive feedbacks and alternative stable states in forest leaf types
AU - Zou, Yibiao
AU - Zohner, Constantin M.
AU - Averill, Colin
AU - Ma, Haozhi
AU - Merder, Julian
AU - Berdugo, Miguel
AU - Bialic-Murphy, Lalasia
AU - Mo, Lidong
AU - Brun, Philipp
AU - Zimmermann, Niklaus E.
AU - Liang, Jingjing
AU - de-Miguel, Sergio
AU - Nabuurs, Gert Jan
AU - Reich, Peter B.
AU - Niinements, Ulo
AU - Dahlgren, Jonas
AU - Kändler, Gerald
AU - Ratcliffe, Sophia
AU - Ruiz-Benito, Paloma
AU - de Zavala, Miguel Angel
AU - Crowther, Thomas W.
AU - Abegg, Meinrad
AU - Adou Yao, Yves C.
AU - Alberti, Giorgio
AU - Almeyda Zambrano, Angelica M.
AU - Alvarado, Braulio Vilchez
AU - Alvarez-Dávila, Esteban
AU - Alvarez-Loayza, Patricia
AU - Alves, Luciana F.
AU - Ammer, Christian
AU - Antón-Fernández, Clara
AU - Araujo-Murakami, Alejandro
AU - Arroyo, Luzmila
AU - Avitabile, Valerio
AU - Aymard, Gerardo A.
AU - Baker, Timothy R.
AU - Bałazy, Radomir
AU - Banki, Olaf
AU - Barroso, Jorcely G.
AU - Bastian, Meredith L.
AU - Bastin, Jean Francois
AU - Birigazzi, Luca
AU - Birnbaum, Philippe
AU - Bitariho, Robert
AU - Boeckx, Pascal
AU - Bongers, Frans
AU - Bouriaud, Olivier
AU - Brancalion, Pedro H.S.
AU - Brandl, Susanne
AU - Brearley, Francis Q.
AU - Brienen, Roel
AU - Broadbent, Eben N.
AU - Bruelheide, Helge
AU - Bussotti, Filippo
AU - Gatti, Roberto Cazzolla
AU - César, Ricardo G.
AU - Cesljar, Goran
AU - Chazdon, Robin
AU - Chen, Han Y.H.
AU - Chisholm, Chelsea
AU - Cho, Hyunkook
AU - Cienciala, Emil
AU - Clark, Connie
AU - Clark, David
AU - Colletta, Gabriel D.
AU - Coomes, David A.
AU - Valverde, Fernando Cornejo
AU - Corral-Rivas, José J.
AU - Crim, Philip M.
AU - Cumming, Jonathan R.
AU - Dayanandan, Selvadurai
AU - de Gasper, André L.
AU - Decuyper, Mathieu
AU - Derroire, Géraldine
AU - DeVries, Ben
AU - Djordjevic, Ilija
AU - Dolezal, Jiri
AU - Dourdain, Aurélie
AU - Obiang, Nestor Laurier Engone
AU - Enquist, Brian J.
AU - Eyre, Teresa J.
AU - Fandohan, Adandé Belarmain
AU - Fayle, Tom M.
AU - Feldpausch, Ted R.
AU - Ferreira, Leandro V.
AU - Finér, Leena
AU - Fischer, Markus
AU - Fletcher, Christine
AU - Fridman, Jonas
AU - Frizzera, Lorenzo
AU - Gamarra, Javier G.P.
AU - Gianelle, Damiano
AU - Glick, Henry B.
AU - Harris, David J.
AU - Hector, Andrew
AU - Hemp, Andreas
AU - Hengeveld, Geerten
AU - Hérault, Bruno
AU - Herbohn, John L.
AU - Herold, Martin
AU - Hillers, Annika
AU - Honorio Coronado, Eurídice N.
AU - Hui, Cang
AU - Ibanez, Thomas
AU - Iêda, Amaral
AU - Imai, Nobuo
AU - Jagodziński, Andrzej M.
AU - Jaroszewicz, Bogdan
AU - Johannsen, Vivian Kvist
AU - Joly, Carlos A.
AU - Jucker, Tommaso
AU - Jung, Ilbin
AU - Karminov, Viktor
AU - Kartawinata, Kuswata
AU - Kearsley, Elizabeth
AU - Kenfack, David
AU - Kennard, Deborah K.
AU - Kepfer-Rojas, Sebastian
AU - Keppel, Gunnar
AU - Khan, Mohammed Latif
AU - Killeen, Timothy J.
AU - Kim, Hyun Seok
AU - Kitayama, Kanehiro
AU - Köhl, Michael
AU - Korjus, Henn
AU - Kraxner, Florian
AU - Laarmann, Diana
AU - Lang, Mait
AU - Lewis, Simon L.
AU - Lu, Huicui
AU - Lukina, Natalia V.
AU - Maitner, Brian S.
AU - Malhi, Yadvinder
AU - Marcon, Eric
AU - Marimon, Beatriz Schwantes
AU - Marimon-Junior, Ben Hur
AU - Marshall, Andrew R.
AU - Martin, Emanuel H.
AU - Kucher, Dmitry
AU - Meave, Jorge A.
AU - Melo-Cruz, Omar
AU - Mendoza, Casimiro
AU - Merow, Cory
AU - Mendoza, Abel Monteagudo
AU - Moreno, Vanessa S.
AU - Mukul, Sharif A.
AU - Mundhenk, Philip
AU - Nava-Miranda, María Guadalupe
AU - Neill, David
AU - Neldner, Victor J.
AU - Nevenic, Radovan V.
AU - Ngugi, Michael R.
AU - Niklaus, Pascal A.
AU - Oleksyn, Jacek
AU - Ontikov, Petr
AU - Ortiz-Malavasi, Edgar
AU - Pan, Yude
AU - Paquette, Alain
AU - Parada-Gutierrez, Alexander
AU - Parfenova, Elena I.
AU - Park, Minjee
AU - Parren, Marc
AU - Parthasarathy, Narayanaswamy
AU - Peri, Pablo L.
AU - Pfautsch, Sebastian
AU - Phillips, Oliver L.
AU - Picard, Nicolas
AU - Piedade, Maria Teresa T.F.
AU - Piotto, Daniel
AU - Pitman, Nigel C.A.
AU - Polo, Irina
AU - Poorter, Lourens
AU - Poulsen, Axel D.
AU - Poulsen, John R.
AU - Pretzsch, Hans
AU - Arevalo, Freddy Ramirez
AU - Restrepo-Correa, Zorayda
AU - Rodeghiero, Mirco
AU - Rolim, Samir G.
AU - Roopsind, Anand
AU - Rovero, Francesco
AU - Rutishauser, Ervan
AU - Saikia, Purabi
AU - Salas-Eljatib, Christian
AU - Saner, Philippe
AU - Schall, Peter
AU - Schelhaas, Mart Jan
AU - Schepaschenko, Dmitry
AU - Scherer-Lorenzen, Michael
AU - Schmid, Bernhard
AU - Schöngart, Jochen
AU - Searle, Eric B.
AU - Seben, Vladimír
AU - Serra-Diaz, Josep M.
AU - Sheil, Douglas
AU - Shvidenko, Anatoly Z.
AU - Silva-Espejo, Javier E.
AU - Silveira, Marcos
AU - Singh, James
AU - Sist, Plinio
AU - Slik, Ferry
AU - Sonké, Bonaventure
AU - Souza, Alexandre F.
AU - Miscicki, Stanislaw
AU - Stereńczak, Krzysztof J.
AU - Svenning, Jens Christian
AU - Svoboda, Miroslav
AU - Swanepoel, Ben
AU - Targhetta, Natalia
AU - Tchebakova, Nadja
AU - ter Steege, Hans
AU - Thomas, Raquel
AU - Tikhonova, Elena
AU - Umunay, Peter M.
AU - Usoltsev, Vladimir A.
AU - Valencia, Renato
AU - Valladares, Fernando
AU - van der Plas, Fons
AU - Van Do, Tran
AU - van Nuland, Michael E.
AU - Vasquez, Rodolfo M.
AU - Verbeeck, Hans
AU - Viana, Helder
AU - Vibrans, Alexander C.
AU - Vieira, Simone
AU - von Gadow, Klaus
AU - Wang, Hua Feng
AU - Watson, James V.
AU - Werner, Gijsbert D.A.
AU - Westerlund, Bertil
AU - Wiser, Susan K.
AU - Wittmann, Florian
AU - Woell, Hannsjoerg
AU - Wortel, Verginia
AU - Zagt, Roderik
AU - Zawiła-Niedźwiecki, Tomasz
AU - Zhang, Chunyu
AU - Zhao, Xiuhai
AU - Zhou, Mo
AU - Zhu, Zhi Xin
AU - Zo-Bi, Irie C.
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
AB - The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
UR - http://www.scopus.com/inward/record.url?scp=85195001010&partnerID=8YFLogxK
U2 - 10.1038/s41467-024-48676-5
DO - 10.1038/s41467-024-48676-5
M3 - Article
C2 - 38821957
AN - SCOPUS:85195001010
SN - 2041-1723
VL - 15
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 4658
ER -