Abstract
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Original language | English |
---|---|
Pages (from-to) | 843-850 |
Number of pages | 8 |
Journal | Nature |
Volume | 629 |
Issue number | 8013 |
DOIs | |
State | Published - 23 May 2024 |
Bibliographical note
Publisher Copyright:© The Author(s) 2024.
Fingerprint
Dive into the research topics of 'Phylogenomics and the rise of the angiosperms'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nature, Vol. 629, No. 8013, 23.05.2024, p. 843-850.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Phylogenomics and the rise of the angiosperms
AU - Zuntini, Alexandre R.
AU - Carruthers, Tom
AU - Maurin, Olivier
AU - Bailey, Paul C.
AU - Leempoel, Kevin
AU - Brewer, Grace E.
AU - Epitawalage, Niroshini
AU - Françoso, Elaine
AU - Gallego-Paramo, Berta
AU - McGinnie, Catherine
AU - Negrão, Raquel
AU - Roy, Shyamali R.
AU - Simpson, Lalita
AU - Toledo Romero, Eduardo
AU - Barber, Vanessa M.A.
AU - Botigué, Laura
AU - Clarkson, James J.
AU - Cowan, Robyn S.
AU - Dodsworth, Steven
AU - Johnson, Matthew G.
AU - Kim, Jan T.
AU - Pokorny, Lisa
AU - Wickett, Norman J.
AU - Antar, Guilherme M.
AU - DeBolt, Lucinda
AU - Gutierrez, Karime
AU - Hendriks, Kasper P.
AU - Hoewener, Alina
AU - Hu, Ai Qun
AU - Joyce, Elizabeth M.
AU - Kikuchi, Izai A.B.S.
AU - Larridon, Isabel
AU - Larson, Drew A.
AU - de Lírio, Elton John
AU - Liu, Jing Xia
AU - Malakasi, Panagiota
AU - Przelomska, Natalia A.S.
AU - Shah, Toral
AU - Viruel, Juan
AU - Allnutt, Theodore R.
AU - Ameka, Gabriel K.
AU - Andrew, Rose L.
AU - Appelhans, Marc S.
AU - Arista, Montserrat
AU - Ariza, María Jesús
AU - Arroyo, Juan
AU - Arthan, Watchara
AU - Bachelier, Julien B.
AU - Bailey, C. Donovan
AU - Barnes, Helen F.
AU - Barrett, Matthew D.
AU - Barrett, Russell L.
AU - Bayer, Randall J.
AU - Bayly, Michael J.
AU - Biffin, Ed
AU - Biggs, Nicky
AU - Birch, Joanne L.
AU - Bogarín, Diego
AU - Borosova, Renata
AU - Bowles, Alexander M.C.
AU - Boyce, Peter C.
AU - Bramley, Gemma L.C.
AU - Briggs, Marie
AU - Broadhurst, Linda
AU - Brown, Gillian K.
AU - Bruhl, Jeremy J.
AU - Bruneau, Anne
AU - Buerki, Sven
AU - Burns, Edie
AU - Byrne, Margaret
AU - Cable, Stuart
AU - Calladine, Ainsley
AU - Callmander, Martin W.
AU - Cano, Ángela
AU - Cantrill, David J.
AU - Cardinal-McTeague, Warren M.
AU - Carlsen, Mónica M.
AU - Carruthers, Abigail J.A.
AU - de Castro Mateo, Alejandra
AU - Chase, Mark W.
AU - Chatrou, Lars W.
AU - Cheek, Martin
AU - Chen, Shilin
AU - Christenhusz, Maarten J.M.
AU - Christin, Pascal Antoine
AU - Clements, Mark A.
AU - Coffey, Skye C.
AU - Conran, John G.
AU - Cornejo, Xavier
AU - Couvreur, Thomas L.P.
AU - Cowie, Ian D.
AU - Csiba, Laszlo
AU - Darbyshire, Iain
AU - Davidse, Gerrit
AU - Davies, Nina M.J.
AU - Davis, Aaron P.
AU - van Dijk, Kor Jent
AU - Downie, Stephen R.
AU - Duretto, Marco F.
AU - Duvall, Melvin R.
AU - Edwards, Sara L.
AU - Eggli, Urs
AU - Erkens, Roy H.J.
AU - Escudero, Marcial
AU - de la Estrella, Manuel
AU - Fabriani, Federico
AU - Fay, Michael F.
AU - Ferreira, Paola de L.
AU - Ficinski, Sarah Z.
AU - Fowler, Rachael M.
AU - Frisby, Sue
AU - Fu, Lin
AU - Fulcher, Tim
AU - Galbany-Casals, Mercè
AU - Gardner, Elliot M.
AU - German, Dmitry A.
AU - Giaretta, Augusto
AU - Gibernau, Marc
AU - Gillespie, Lynn J.
AU - González, Cynthia C.
AU - Goyder, David J.
AU - Graham, Sean W.
AU - Grall, Aurélie
AU - Green, Laura
AU - Gunn, Bee F.
AU - Gutiérrez, Diego G.
AU - Hackel, Jan
AU - Haevermans, Thomas
AU - Haigh, Anna
AU - Hall, Jocelyn C.
AU - Hall, Tony
AU - Harrison, Melissa J.
AU - Hatt, Sebastian A.
AU - Hidalgo, Oriane
AU - Hodkinson, Trevor R.
AU - Holmes, Gareth D.
AU - Hopkins, Helen C.F.
AU - Jackson, Christopher J.
AU - James, Shelley A.
AU - Jobson, Richard W.
AU - Kadereit, Gudrun
AU - Kahandawala, Imalka M.
AU - Kainulainen, Kent
AU - Kato, Masahiro
AU - Kellogg, Elizabeth A.
AU - King, Graham J.
AU - Klejevskaja, Beata
AU - Klitgaard, Bente B.
AU - Klopper, Ronell R.
AU - Knapp, Sandra
AU - Koch, Marcus A.
AU - Leebens-Mack, James H.
AU - Lens, Frederic
AU - Leon, Christine J.
AU - Léveillé-Bourret, Étienne
AU - Lewis, Gwilym P.
AU - Li, De Zhu
AU - Li, Lan
AU - Liede-Schumann, Sigrid
AU - Livshultz, Tatyana
AU - Lorence, David
AU - Lu, Meng
AU - Lu-Irving, Patricia
AU - Luber, Jaquelini
AU - Lucas, Eve J.
AU - Luján, Manuel
AU - Lum, Mabel
AU - Macfarlane, Terry D.
AU - Magdalena, Carlos
AU - Mansano, Vidal F.
AU - Masters, Lizo E.
AU - Mayo, Simon J.
AU - McColl, Kristina
AU - McDonnell, Angela J.
AU - McDougall, Andrew E.
AU - McLay, Todd G.B.
AU - McPherson, Hannah
AU - Meneses, Rosa I.
AU - Merckx, Vincent S.F.T.
AU - Michelangeli, Fabián A.
AU - Mitchell, John D.
AU - Monro, Alexandre K.
AU - Moore, Michael J.
AU - Mueller, Taryn L.
AU - Mummenhoff, Klaus
AU - Munzinger, Jérôme
AU - Muriel, Priscilla
AU - Murphy, Daniel J.
AU - Nargar, Katharina
AU - Nauheimer, Lars
AU - Nge, Francis J.
AU - Nyffeler, Reto
AU - Orejuela, Andrés
AU - Ortiz, Edgardo M.
AU - Palazzesi, Luis
AU - Peixoto, Ariane Luna
AU - Pell, Susan K.
AU - Pellicer, Jaume
AU - Penneys, Darin S.
AU - Perez-Escobar, Oscar A.
AU - Persson, Claes
AU - Pignal, Marc
AU - Pillon, Yohan
AU - Pirani, José R.
AU - Plunkett, Gregory M.
AU - Powell, Robyn F.
AU - Prance, Ghillean T.
AU - Puglisi, Carmen
AU - Qin, Ming
AU - Rabeler, Richard K.
AU - Rees, Paul E.J.
AU - Renner, Matthew
AU - Roalson, Eric H.
AU - Rodda, Michele
AU - Rogers, Zachary S.
AU - Rokni, Saba
AU - Rutishauser, Rolf
AU - de Salas, Miguel F.
AU - Schaefer, Hanno
AU - Schley, Rowan J.
AU - Schmidt-Lebuhn, Alexander
AU - Shapcott, Alison
AU - Al-Shehbaz, Ihsan
AU - Shepherd, Kelly A.
AU - Simmons, Mark P.
AU - Simões, André O.
AU - Simões, Ana Rita G.
AU - Siros, Michelle
AU - Smidt, Eric C.
AU - Smith, James F.
AU - Snow, Neil
AU - Soltis, Douglas E.
AU - Soltis, Pamela S.
AU - Soreng, Robert J.
AU - Sothers, Cynthia A.
AU - Starr, Julian R.
AU - Stevens, Peter F.
AU - Straub, Shannon C.K.
AU - Struwe, Lena
AU - Taylor, Jennifer M.
AU - Telford, Ian R.H.
AU - Thornhill, Andrew H.
AU - Tooth, Ifeanna
AU - Trias-Blasi, Anna
AU - Udovicic, Frank
AU - Utteridge, Timothy M.A.
AU - Del Valle, Jose C.
AU - Verboom, G. Anthony
AU - Vonow, Helen P.
AU - Vorontsova, Maria S.
AU - de Vos, Jurriaan M.
AU - Al-Wattar, Noor
AU - Waycott, Michelle
AU - Welker, Cassiano A.D.
AU - White, Adam J.
AU - Wieringa, Jan J.
AU - Williamson, Luis T.
AU - Wilson, Trevor C.
AU - Wong, Sin Yeng
AU - Woods, Lisa A.
AU - Woods, Roseina
AU - Worboys, Stuart
AU - Xanthos, Martin
AU - Yang, Ya
AU - Zhang, Yu Xiao
AU - Zhou, Meng Yuan
AU - Zmarzty, Sue
AU - Zuloaga, Fernando O.
AU - Antonelli, Alexandre
AU - Bellot, Sidonie
AU - Crayn, Darren M.
AU - Grace, Olwen M.
AU - Kersey, Paul J.
AU - Leitch, Ilia J.
AU - Sauquet, Hervé
AU - Smith, Stephen A.
AU - Eiserhardt, Wolf L.
AU - Forest, Félix
AU - Baker, William J.
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/5/23
Y1 - 2024/5/23
N2 - Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
AB - Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
UR - http://www.scopus.com/inward/record.url?scp=85191337518&partnerID=8YFLogxK
U2 - 10.1038/s41586-024-07324-0
DO - 10.1038/s41586-024-07324-0
M3 - Article
AN - SCOPUS:85191337518
SN - 0028-0836
VL - 629
SP - 843
EP - 850
JO - Nature
JF - Nature
IS - 8013
ER -