Abstract
To better understand the factors underlying the continued incidence of clinical episodes of falciparum malaria in E-2025 countries targeting elimination, we characterized the molecular epidemiology of Plasmodium falciparum disease transmission after a clonal outbreak in Ecuador. Here we study disease transmission by documenting the diversity and population structure of the major variant surface antigen of the blood stages of P. falciparum encoded by the var multigene family. We used a high-resolution genotyping method, “varcoding”, involving targeted amplicon sequencing to fingerprint the DBLα encoding region of var genes to describe both antigenic var diversity and var repertoire similarity or relatedness in parasite isolates from clinical cases. We identified nine genetic varcodes in 58 P. falciparum isolates causing clinical disease in 2013-2015. Network analyses revealed that four of the varcodes were highly related to the outbreak varcode, with identification of possible diversification of the outbreak parasites by recombination as seen in three of those varcodes. The majority of clinical cases in Ecuador were associated with parasites with highly related or recombinant varcodes to the outbreak clone and due to local transmission rather than recent importation of parasites from other endemic countries. Sharing of types in Ecuadorian varcodes to those sampled in South American varcodes reflects historical parasite importation of some varcodes, especially from Colombia and Peru. Our findings highlight the translational application of varcoding for outbreak surveillance in epidemic/unstable malaria transmission, such as in E-2025 countries, and point to the need for surveillance of local reservoirs of infection in Ecuador to achieve the malaria elimination goal by 2025.
Original language | English |
---|---|
Article number | 1085862 |
Journal | Frontiers in Tropical Diseases |
Volume | 4 |
DOIs | |
State | Published - 17 Mar 2023 |
Bibliographical note
Publisher Copyright:Copyright © 2023 Ruybal-Pesántez, Sáenz, Deed, Johnson, Larremore, Vera-Arias, Tiedje and Day.
Funding
This research was financially supported by the Pontificia Universidad Católica del Ecuador (grant numbers: L13058, L13248, M13416, N13416, O13087[QINV0084] to FES), the Fogarty International Center at the National Institutes of Health [Program on the Ecology and Evolution of Infectious Diseases (EEID), Grant number: R01-TW009670 to KPD], and the National Institutes of Allergy and Infectious Diseases, National Institutes of Health (grant number: R01-AI084156 to KPD). SR-P was supported by a Melbourne International Engagement Award from the University of Melbourne and gratefully acknowledges the J.D. Smyth Travel Award from the Australian Society for Parasitology that enabled her to travel to Ecuador to establish this collaboration. Acknowledgments
Funders | Funder number |
---|---|
National Institutes of Health | R01-TW009670 |
National Institute of Allergy and Infectious Diseases | R01-AI084156 |
Fogarty International Center | |
Australian Society for Parasitology | |
University of Melbourne |
Keywords
- Plasmodium falciparium
- antigenic diversity
- disease transmission
- genomic epidemiology
- malaria elimination
- molecular surveillance
- outbreak
- var DBLα