Innovation in obtaining bacterial nanocellulose from banana rachis: Effects of ozone treatment

Manuel Fiallos-Cardenas, Cesar Gavin, Kevin Huilcarema-Enríquez, Anita Cumbicus-Bravo, Francisco Pozo

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The production of bananas generates considerable waste, including rachis, which can negatively impact the environment if not managed effectively. This study explores the potential of valorizing banana rachis, currently discarded, to produce bacterial nanocellulose (BNC), a bioproduct with applications in the textile, food, and cosmetic industries. The objective is to investigate the effect of different ozone treatment times (0, 5, 20, and 30 minutes) on the physicochemical properties of banana rachis juice (BRJ). The selected variables—dissolved oxygen, oxygen saturation, salinity, total dissolved solids, electrical conductivity, pH, turbidity, °Brix, and electrical resistance—are critical for influencing microbial growth and fermentation efficiency, essential for BNC production. The influence of varying BRJ concentrations (25 %, 50 %, and 75 %) and ozonation times on these properties and BNC yield was assessed. The BNC obtained from ozonated BRJ was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Results indicated that the physicochemical properties of the BNC were consistent with those produced by the Hestrin-Schramm (HS) method, validating the reproducibility of these characteristics. A 25 % BRJ concentration treated with ozone for 20 minutes yielded approximately 0.88 g of dry BNC per liter after seven days of fermentation. This study provides an innovative solution for valorizing agro-industrial waste and suggests more sustainable waste management methods, with significant implications for both industry and the environment.

Original languageEnglish
Article number101044
JournalCase Studies in Chemical and Environmental Engineering
Volume11
DOIs
StatePublished - Jan 2025

Bibliographical note

Publisher Copyright:
© 2024

Funding

This work was supported by the Universidad Estatal de Milagro.

FundersFunder number
Universidad Estatal de Milagro

    Keywords

    • Bacterial nanocellulose
    • Banana rachis juice
    • Ozone treatment
    • Physicochemical characterization

    Fingerprint

    Dive into the research topics of 'Innovation in obtaining bacterial nanocellulose from banana rachis: Effects of ozone treatment'. Together they form a unique fingerprint.

    Cite this