Abstract
The production of bananas generates considerable waste, including rachis, which can negatively impact the environment if not managed effectively. This study explores the potential of valorizing banana rachis, currently discarded, to produce bacterial nanocellulose (BNC), a bioproduct with applications in the textile, food, and cosmetic industries. The objective is to investigate the effect of different ozone treatment times (0, 5, 20, and 30 minutes) on the physicochemical properties of banana rachis juice (BRJ). The selected variables—dissolved oxygen, oxygen saturation, salinity, total dissolved solids, electrical conductivity, pH, turbidity, °Brix, and electrical resistance—are critical for influencing microbial growth and fermentation efficiency, essential for BNC production. The influence of varying BRJ concentrations (25 %, 50 %, and 75 %) and ozonation times on these properties and BNC yield was assessed. The BNC obtained from ozonated BRJ was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Results indicated that the physicochemical properties of the BNC were consistent with those produced by the Hestrin-Schramm (HS) method, validating the reproducibility of these characteristics. A 25 % BRJ concentration treated with ozone for 20 minutes yielded approximately 0.88 g of dry BNC per liter after seven days of fermentation. This study provides an innovative solution for valorizing agro-industrial waste and suggests more sustainable waste management methods, with significant implications for both industry and the environment.
Original language | English |
---|---|
Article number | 101044 |
Journal | Case Studies in Chemical and Environmental Engineering |
Volume | 11 |
DOIs | |
State | Published - Jan 2025 |
Bibliographical note
Publisher Copyright:© 2024
Funding
This work was supported by the Universidad Estatal de Milagro.
Funders | Funder number |
---|---|
Universidad Estatal de Milagro |
Keywords
- Bacterial nanocellulose
- Banana rachis juice
- Ozone treatment
- Physicochemical characterization