TY - JOUR
T1 - Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles
AU - Carrera, Patricio
AU - Espinoza-Montero, Patricio J.
AU - Fernández, Lenys
AU - Romero, Hugo
AU - Alvarado, José
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - We have developed an anodic stripping voltammetry method that employs carbon fiber ultra-microelectrodes modified with gold nanoparticles to determine arsenic in natural waters. Gold nanoparticles were potentiostatically deposited on carbon fiber ultra-microelectrodes at −0.90 V (vs SCE) for a time of 15 s, to form the carbon fiber ultra-microelectrodes modified with gold nanoparticles. Cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy coupled to an X-ray microanalysis system were used to check and confirm the presence of gold nanoparticles on the carbon fiber ultra-microelectrodes. Arsenic detection parameters such as deposition potential and deposition time were optimized allowing a detection range between 5 to 60 µg L-1. The developed modified electrodes allowed rapid As determination with improved analytical characteristics including better repeatability, higher selectivity, lower detection limit (0.9 μg L-1) and higher sensitivity (0.0176 nA μg L-1) as compared to the standard carbon electrodes. The analytical capability of the optimized method was demonstrated by determination of arsenic in certified reference materials (trace elements in water (NIST SRM 1643d)) and by comparison of results with those obtained by hydride generation atomic absorption spectrometry (HG-AAS) in the determination of the analyte in tap and well waters.
AB - We have developed an anodic stripping voltammetry method that employs carbon fiber ultra-microelectrodes modified with gold nanoparticles to determine arsenic in natural waters. Gold nanoparticles were potentiostatically deposited on carbon fiber ultra-microelectrodes at −0.90 V (vs SCE) for a time of 15 s, to form the carbon fiber ultra-microelectrodes modified with gold nanoparticles. Cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy coupled to an X-ray microanalysis system were used to check and confirm the presence of gold nanoparticles on the carbon fiber ultra-microelectrodes. Arsenic detection parameters such as deposition potential and deposition time were optimized allowing a detection range between 5 to 60 µg L-1. The developed modified electrodes allowed rapid As determination with improved analytical characteristics including better repeatability, higher selectivity, lower detection limit (0.9 μg L-1) and higher sensitivity (0.0176 nA μg L-1) as compared to the standard carbon electrodes. The analytical capability of the optimized method was demonstrated by determination of arsenic in certified reference materials (trace elements in water (NIST SRM 1643d)) and by comparison of results with those obtained by hydride generation atomic absorption spectrometry (HG-AAS) in the determination of the analyte in tap and well waters.
KW - Anodic stripping voltammetry
KW - Arsenic electrochemical detection
KW - Carbon fiber ultra-microelectrodes
KW - Gold nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=85010304143&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2017.01.056
DO - 10.1016/j.talanta.2017.01.056
M3 - Article
C2 - 28213223
AN - SCOPUS:85010304143
SN - 0039-9140
VL - 166
SP - 198
EP - 206
JO - Talanta
JF - Talanta
ER -