Climate sensitive size-dependent survival in tropical trees

Daniel J. Johnson, Jessica Needham, Chonggang Xu, Elias C. Massoud, Stuart J. Davies, Kristina J. Anderson-Teixeira, Sarayudh Bunyavejchewin, Jeffery Q. Chambers, Chia Hao Chang-Yang, Jyh Min Chiang, George B. Chuyong, Richard Condit, Susan Cordell, Christine Fletcher, Christian P. Giardina, Thomas W. Giambelluca, Nimal Gunatilleke, Savitri Gunatilleke, Chang Fu Hsieh, Stephen HubbellFaith Inman-Narahari, Abdul Rahman Kassim, Masatoshi Katabuchi, David Kenfack, Creighton M. Litton, Shawn Lum, Mohizah Mohamad, Musalmah Nasardin, Perry S. Ong, Rebecca Ostertag, Lawren Sack, Nathan G. Swenson, I. Fang Sun, Sylvester Tan, Duncan W. Thomas, Jill Thompson, Maria Natalia Umaña, Maria Uriarte, Renato Valencia, Sandra Yap, Jess Zimmerman, Nate G. McDowell, Sean M. McMahon

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four ‘survival modes’ that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.

Original languageEnglish
Pages (from-to)1436-1442
Number of pages7
JournalNature Ecology and Evolution
Volume2
Issue number9
DOIs
StatePublished - 1 Sep 2018

Bibliographical note

Publisher Copyright:
© 2018, The Author(s).

Fingerprint

Dive into the research topics of 'Climate sensitive size-dependent survival in tropical trees'. Together they form a unique fingerprint.

Cite this